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Properties of a random attachment growing network
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In this study we introduce and analyze the statistical structural properties of a model of growing networks
which may be relevant to social networks. At each step a new node is added which selectsk possible partners
from the existing network and joins them with probabilityd by undirected edges. The ‘‘activity’’ of the node
ends here; it will get new partners only if it is selected by a newcomer. The model produces an infinite-order
phase transition when a giant component appears at a specific value ofd, which depends onk. The average
component size is discontinuous at the transition. In contrast, the network behaves significantly different for
k51. There is no giant component formed for anyd and thus in this sense there is no phase transition.
However, the average component size diverges ford> 1
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I. INTRODUCTION

There are many kinds of networks including probably t
most influential network of all, the World Wide Web@1#.
This network is a popular one to analyze because of its
and easy accessibility for statistical analysis. However, th
are many other networks that share some of the propertie
the Web and some that do not. Among these networks
find social networks@2–4#, collaboration nets@5–8#, indus-
trial and business related networks@5,6,9#, transportation
nets@10# and many biological related nets such as food, e
logical, and protein interaction networks@11–14#, and neural
networks@15#.

The mathematical description of networks started with
fundamental works of Erdo˝s and Re´nyi @16,17#, which in the
absence of reliable data on large networks were rarely c
pared to real networks. Recently, the computational bo
has provided us an increasing number of types of netwo
and more data on these networks. One of the most exc
discoveries is the scale-free structures of certain evolv
networks@18–20#. These nets have power-law degree dis
bution, where only a few vertices have many connection
the others and the rest of the graph is rarely connected
explain the origin of this scale-free structure of networ
Barabási et al. @21,22# suggested the mechanism of prefere
tial attachment and emphasized the key role of growth
their model the probability of a new node connecting to
existing node is proportional to the degree of the target no
Variations on this model include networks where there
aging of nodes, nonlinear attachment probabilities, and
wiring are allowed@23–26#.

Probably the most obvious feature of real networks tha
missing from most of the models studied by mathematici
and physicists are characteristics of individual nodes in
networks which influence the connection probability. Thus
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the nodes represent individual persons, it is obvious tha
many circumstances two people are more likely to beco
connected in some form of relationship because of the na
of their individual characteristics. Our model is motivated
the need to incorporate this idea. A similar idea was used
a preferential attachment model by Bianconi and Barab´si
@27# who assigned to each new node a fitness paramete
their model a larger fitness parameter may overcompen
the smaller probability of attachment.

In our study we propose a simple model of growing n
works whose statistical properties are identical to a m
complicated model containing nodes with distinct charac
istics. We will calculate the edge distribution of the growin
network, the distribution of cluster sizes, and the emerge
of a giant cluster. We will also show how the number
attempted connections made when a new node is added
termines the position and type of the phase transition as
as the cluster-size distribution.

II. THE MODEL

We first consider a social network model where each n
has individual characteristics or traits. Each node tha
added to the network is assigned a permanent set of ran
traits which could be coded as an ordered binary string
vector of lengthL. When a node is added it chooses ra
domly kPN possible partners from the already existin
nodes, or if there are less thank11 ~because the simulation
has not yet reached time stepk12) it chooses all the exist
ing nodes as possible partners. A trait distance between
new node and one of its possible partners is calculated b
on their trait vectors (tW1 , tW2) using a distance measure
D( tW1 , tW2), such as the Hamming distance. Then a connec
is formed between the two nodes with a probability det
mined from a given probability distribution over the distan
function p(D). Different functionsp(D) correspond to dif-
ferent sociopsychological situations. Thus, if we wish
model the case where people are more likely to link toget
©2003 The American Physical Society04-1
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if they have similar traits, thenp(D) would be a monotoni-
cally decreasing function ofD. For this case, the simples
p(D) would be to form a link ifD is below some threshold
This procedure is repeated for each possible partner of
new node. Thus, each new node can have initially up tk
links with the other existing nodes. Existing nodes can h
more thank links as more nodes are added to the netw
and link up with the existing nodes. There are no multip
links between pairs of nodes.

Because each node is given a random trait vector, and
nodes to link to are also chosen randomly, many proper
of the network simply depend on the probabilityd that two
chosen nodes will link together:

d5(
D

p„D~ tW1 , tW2!…r „D~ tW1 , tW2!…, ~1!

wherer (D) is the probability of the distanceD between two
nodes, and the sum is over all possible distance values. T
the model is reduced to the following procedure. At ea
time step we add a node to the network, and attempt to
with k existing nodes which are chosen at random. An ac
connection is made with a probabilityd. The asymptotic
behavior of the network in the limit of large timet does not
depend on the initial condition of starting with a single is
lated vertex.

Although frequently structural properties of a network
nodes with trait vectors depend only ond, there are other
properties which will depend on the detailed form ofp(D)
and the nature of the trait vectors. Examples of such pro
ties include the distribution of traits in different parts of th
network and the correlation of traits with distance in t
network. For example, one can imagine a very simple n
work of nodes representing men and women. In one netw
the probability of forming a link is independent of sex and
the other persons prefer to link up with members of the
posite sex. As long as the mean probability of two chos
nodes linking together is the same in the two scenarios
structural properties of the two networks will be the sam
but the distribution of men and women within the netwo
will be quite different in the two cases. In this paper w
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confine ourselves to the structural properties of networks
are considering these other nonstructural properties in
current research.

III. AGE DEPENDENCE OF THE EXPECTED NUMBER
OF EDGES, AND THE EDGE DISTRIBUTION

The expected number of edges at a node is approxima

~2!

whereN.k is the time step when it was created~the smaller
N is, the older the node is!, t is the total simulation time,d is
the probability that two nodes form a connection,k is the
maximum number of initial connections of a newly creat
node, andHn is thenth harmonic number given by the for
mula Hn5( i 51

n 1/i for n.0, and H050. This equation
shows that the number of edges of a node heavily depend
the age of the node.

Equation~2! slightly overestimates the number of conne
tions for the oldest nodes in the network in two respec
First, the above formula assumes that a node always hk
possible initial connections. However, multiple connectio
between a pair of nodes are not allowed, and there are
thank available partners for the initial connections of a no
created before or in thekth time step~overestimation of ini-
tial connections!. Second, the term for the late connectio
assumes that a node has ak/(m21) chance of being selecte
as the partner of themth node ~which choosesk possible
partners out ofm21 already existing nodes!. However, for a
node created in time stepN,k, this term yields a probability
of being chosen greater than 1 between time stepsN11 and
k ~wherem21,k) that is unacceptable again because m
tiple connections between a pair of nodes are not allow
~overestimation of late connections!. Below is the formula
correcting these errors, but we will use the simpler, unc
rected formula in the remaining part of our paper because
errors are negligible.
~3!
4-2
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PROPERTIES OF A RANDOM ATTACHMENT . . . PHYSICAL REVIEW E 68, 066104 ~2003!
using Hn; ln n1g11/2n, where g52*0
`e2xln x dx

;0.5772 is the Euler-Mascheroni constant@28#, and a t51
1 ln(t21)11/2(t21).

Note that the firstk11 nodes are expected to have t
same number of connections~becauseKN does not depend
on N in their case!, and the edge number starts breaki
down exponentially for nodes created after time stepk11
@Figs. 1 and 2~a!#. This means that this growth mechanism
identical to that where the firstk11 nodes are created in th
same time step.

We now wish to determine the edge distributionP(X)
equal to the probability that a node picked at random has
averageX edges. We return to Eq.~2! ignoring the correction
term in Eq.~3!, and write the formula forKN(t) in the sim-
pler form @Figs. 1 and 2~a!#:

FIG. 1. ~a! Expected number of edges of a node (KN) as a
function of the age of the node (N) at different ages of the networ
(t). Symbolsare numerically calculated values from Eq.~3!, show-
ing that the firstk11 nodes have the same number of connecti
at anyt, whereas there is an exponential breakdown in the expe
number of edges for nodes created later than these.Linesrepresent
approximations by Eq.~4!: the number of edges of the firstk nodes
are overestimated because the correction term in Eq.~3! was ig-
nored~see text!. Note that thex axis is logarithmic.~b! Edge dis-
tribution of the network.Symbolsrepresent numerically calculate
distributions, where the numbers of edges of individual nodes w
obtained from Eq.~3!. These numbers were binned into integ
values and the relative frequencies of occurrences in each bin
plotted. Theline represents the approximate distribution given
Eq. ~6!, showing that it is valid for the edge distribution at larg
values oft ~for t>100). The mismatch between approximated a
actual distributions at the highest connection numbers is due to
same reason as in~a!. Note thaty axis is logarithmic. Parameter
wered50.5, k55.
06610
n

KN~ t !.dkS a t2 ln~N21!2
1

2~N21! D , ~4!

wherea t is the same quantity used in Eq.~3!. Using Eq.~4!,
neglecting the term 1/2(N21) in Eq.~4! for N large enough,
and knowing that the age distribution of nodes is unifor
we analytically approximate the edge distribution of the n
work with the following exponential

P„K~ t !5X…5
1

dkt
e2X/dk1a t. ~5!

We used the standard transformation rule for random v
ables,P(N)5P(KN)udKN /dNu with P(N)51/t. For suffi-
ciently larget, due to the definition ofa t , this can be effec-
tively approximated by a distribution which is independe
of t @Figs. 1 and 2~b!#:
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FIG. 2. ~a! Numerical simulation of the average expected nu
ber of edges of a node (KN) as a function of the age of the nod
(N). Symbolsare results of numerical simulations,line is the graph
of Eq. ~4!. Also see notes of Fig. 1~a!. ~b! Numerical simulation of
the edge distribution of the network~symbols!. Line is the graph of
Eq. ~6!. Average relative frequency of individual number of edg
and their standard deviation were calculated. Deviation of simu
tion from analytical results at high number of edges is a result of
finite size of simulated networks due to dispersion of expected n
ber of edges around its expected value as shown in partA of this
figure. As age of the network increases this deviation disapp
and simulation results approach analytical approximation for lon
interval. At low number of edges deviation results from neglect
the correction term in Eq.~4! Averages and standard deviation
were calculated from 100 simulations. Parameters wered50.5, k
55 as in Fig. 1.
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P~X!5
1

dk
e2X/dk11. ~6!

We can also determine a slightly different degree or e
distribution which is the percentage of nodes withm edges.
Denote bydm(t) the expected number of nodes with degr
m at timet. The number of isolated nodesd0(t) will increase
by (12d)k, which is the probability of the addition node no
connecting to any existing node, and decrease on averag
kdd0(t)/t :

d0~ t11!5d0~ t !1~12d!k2kd
d0~ t !

t
. ~7!

The formula for the expected number of nodes of degreem
.0 is a bit complicated. For (1<m<k) there are two ways
to increasedm : either selecting degreem21 nodes for con-
nection with the new node or the new node having exactlm
edges. For (m.k), the new node cannot contribute todm .
The decrease will be proportional to the probability of cho
ing a degreem node for attachment.

1<m<k: dm~ t11!5dm~ t !1kd
dm21~ t !

t
1S k

mD
3dm~12d!k2m2kd

dm~ t !

t
, ~8!

m.k: dm~ t11!5dm~ t !1kd
dm21~ t !

t
2kd

dm~ t !

t
. ~9!

These equations are correct ast→`, and numerical simu-
lations show thatdm(t);pmt. Substituting this form into the
equations fordm(t) we obtain

m<k: pm5dm(
j 50

m S k

j D ~12d!k2 j

~11kd! S k

11kd D m2 j

, ~10!

m.k: pm5pkS kd

11kd D m2k

. ~11!

This degree distributionpm decays exponentially consis
tent with our previous result forP(X).
06610
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IV. CRITICAL BEHAVIOR

A. Cluster-size distribution

In some network models, such as the preferential atta
ment models, all the nodes belong to a single cluster.
such models the focus is on the degree distribution and
distance between nodes in the network. However, our
work can contain a number of disconnected clusters
nodes. Then the key questions become what is the clu
size distribution and is there a phase transition betwee
collection of finite size clusters and the appearance of a g
cluster much larger than the rest. The transition is similar
that in percolation, with our parameterd playing the role of
the site occupation probability in a percolation model. T
key difference between our model and percolation model
that our nodes do not sit on a lattice structure, and ther
thus no geometric constraints. The definition of a giant cl
ter in our model is somewhat different than a spanning cl
ter in percolation models. Nevertheless, some of the beha
is similar.

Our model is similar to one by Callawayet al. @29# where
an infinite-order phase transition was found. In that mo
after a node was added to the network, two nodes w
picked at random and connected with probabilityd. Our
model is more general in that we consider the effect of m
ing more than one link at any given time. Also, in our mod
the new links are between the added node and exis
nodes, whereas in the model by Callawayet al. the new links
are between any two nodes in the network.

To determine the cluster distribution we use a proced
similar to the one we used to calculate the degree distr
tion. The cluster numberNj (t) denotes the expected numb
of clusters of sizej. On average, at each time step, (12d)k

isolated nodes arrive at the network andkdN1(t)/t nodes
will be chosen for attachment reducingN1. Thus,N1 is de-
scribed by

N1~ t11!5N1~ t !1~12d!k2kd
N1~ t !

t
. ~12!

For j .1 new clusters of sizej come from connecting the
new node to a cluster of sizej 21 or if k.1 using the new
node to make connections between smaller clusters wh
sizes add up toj. ReducingNj will be jkdNj (t)/t nodes from
clusters of sizej connecting to the new node. Thus, we ha
N2~ t11!5N2~ t !1S k

1D d~12d!k21
N1~ t !

t
2kd

2N2~ t !

t
, ~13!

A

Nj~ t11!5Nj~ t !1S (
r 51

min(k, j 21) S k

r D d r~12d!k2r (
z11 . . . 1zr5 j 21

zi>1,i<r

z1Nz1
~ t !

t

z2Nz2
~ t !

t
•••

S j 212(
i 51

r 21

zi DN( j 212(
i 51

r 21

zi )
~ t !

t D
2kd

jN j~ t !

t
. ~14!
4-4
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The first sum in Eq.~14! determines the number of sum
in the next term. Each of these sums represent a cluster
is melted into thej sized cluster. These equations are va
for t→`, where the probability of closed loops tends
zero. The giant cluster, if there exists one, is an exceptio
which connection of nodes in loops is not negligible. Th
Eq. ~14! holds only for the finite sized clusters in the ne
work. This property lets us to determine a generating fu
tion which we can use to find the size of the giant clus
Our simulations show that solutions of Eqs.~12!–~14! are of
the steady state formNj (t)5aj t. Using this form in Eqs.
~12!–~14!, we find

a15
~12d!k

11kd
, ~15!

a25

S k

1D d~12d!k21a1

~112kd!
, ~16!

aj5
1

11 jkd F (
r 51

min(k, j 21) S k

r D d r~12d!k2r

3 (
z11•••1zr5 j 21

zi>1,i<r

S j 212(
i 51

r 21

zi D
3a( j 212(

i 51
r 21zi ))l 51

r 21

~zlazl
!G . ~17!

Generally, we cannot obtain a simpler equation for
cluster-size distributionaj , except fork51. Substitutingk
51 into the Eqs.~15!–~17! we obtain after some algebra th
general result

aj5~12d!d j 21~ j 21!! )
m51

j
1

11md
, ~18!
06610
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which can be written in the form

aj5
~12d!G~1/d!

d2

G~ j !

G~ j 1111/d!
, ~19!

whereG(x) denotes theg function. Equation~19! shows that
the cluster-size distribution fork51 always follows a power-
law distribution. This result is confirmed by simulation
shown in the left graph of Fig. 3. Distributions of clust
sizes fork52 ~right graph of Fig. 3!, in contrast tok51
show power-law behavior only near the phase transition.

B. Position of the phase transition

Figure 4 shows the simulation results forS, the ratio of
the average size of the largest cluster to the total numbe
nodes versus the connection probabilityd. The figure sug-
gests that there is a smooth transition in the appearanceS
at a specific value ofd betweend50 and d50.2, which
depends on the parameterk. To predict the position of a
possible phase transitiondc @29#, we will use a generating
function for the cluster-size distribution@30#. To derive the
generating function we use the iterative Eqs.~15!–~17!. The
generating function will be of the form

g~x!5(
j 51

`

bjx
j , ~20!

where

bj5 ja j , ~21!

is the probability that a randomly chosen node is from
cluster of sizej. Multiplying both sides of Eqs.~15!–~17! by
jx j , and summing overj we derive a differential equation fo
g(x)
ast
ata
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FIG. 3. Cluster-size distribution for differentds andk51 ~left!, k52 ~right!. Solid, dashed, and dotted lines are obtained from a le
squares fit for the interval 11. ln(Nj).24 ~a! and 20. ln(Nj).2 ~b! indicating the power-law behavior of the distributions. Simulation d
were obtained by averaging over 500 runs of 107 time steps and are shown on a log-log plot. Note that in~b! simulations ford50.05 and
d50.3 distributions do not follow a power law. In Sec. IV B it is shown that there is a phase transition neard50.146.
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g52kdg81x~12d!k1(
i 51

k S k

i D d i~12d!k2 i

3~x2g8gi 21i 1xgi !. ~22!

Rearranging forg8 we obtain

g85

~12d!k2g/x1(
i 51

k S k

i D d i~12d!k2 igi

kd2x(
i 51

k S k

i D d i~12d!k2 igi 21i

, ~23!

which can be further simplified to

g85
2g/x1@11~g21!d#k

kd2xkd~11~g21!d!k21
. ~24!

The generating function for the finite size clusters is e
actly one atx51 when there is no giant cluster in the ne
work andg(1),1 otherwise. Hence

S512g~1!. ~25!

Without an analytic solution for Eq.~24!, we calculateS
numerically by integrating Eq.~24! with the initial condition
@x,g(x)#5(x0 ,x0(12d)k/@11kd)# wherex0 is small. This
is equivalent to starting with a cluster of only one node.
Fig. 4 there are results from direct simulations of the mo
~symbols! and solid lines from the integration of the gene
ating function. The agreement is good which verifies the
proximations.

To discuss the phase transition location we first cons
the casesk.1. Consider the expected value that a random
chosen node belongs to a finite size cluster. We can de
mine this quantity in terms of the generating functiong(x)

^s&5
g8~1!

g~1!
. ~26!
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FIG. 4. Giant cluster sizeS as a function ofd andk. Symbols
are from simulations of the growing network for 106 time steps
averaged over 30 runs. Lines are from the analytical calculatio
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For those values ofd where no giant cluster exists,d,dc ,
g(1)51, and both the numerator and denominator of E
~24! goes to zero asx→1. Using l’Hôpital’s rule we derive a
quadratic equation forg8(1). Thesolution of this equation is

g8~1!5
122kd6A~2kd21!224k~k21!d2

2k~k21!d2
, ~27!

for g(1)51. Because asd→0 all clusters will have size 1
one can show that the correct solution of Eq.~27! is the one
with the negative sign. In addition from Eq.~27! we can find
the location of the phase transition. It is the value ofd where
the solution of Eq.~27! becomes complex:

dc5
12A121/k

2
. ~28!

In the region where there is a giant clusterd.dc , Eq. ~24!
becomes asx→1,

g85
2g1~11~g21!d!k

kd2kd~11~g21!d!k21
, ~29!

which is still not solvable analytically. Making the approx
mation (16a)k'16ka when a!1, we can simplify Eq.
~29! close todc :

g8~1!'
kd21

kd2~12k!
, ~30!

whereg(1),1, d.dc , and @g(1)21#d!1. In Fig. 5 we
show the simulation results and the above derived theore
functions forg8(1). We can seethat for d,dc , where we
have an explicit expression forg8(1) in terms of the param-
etersk andd the fit is very good. Ford.dc the fit is good
close to the phase transition point, where the approxima
(g21)d!1 holds. Although belowdc the description of
g8(1) is very good, it seems that the location of the pha
transition and the value of the functiong8(1) abovedc is
somewhat different than the data. Also if we carefully che
Fig. 5 at the jumps, we find that the larger the jump the l
accurate the theory seems to be. This can be explaine
follows. At the critical point the average size of finite cluste
jumps, hence much larger clusters appear in the network
we can only simulate for a finite time large~but not the giant!
clusters are underrepresented. The weights of them comp
from the simulation data are less than they would be in
infinitely long simulation. Away from the transition regim
fewer finite size clusters remain beside the giant cluste
the network, and thus the distribution can be specified be

Although the formalism using the generating function c
be done fork51, the meaning of a giant cluster is problem
atic. In Sec. IV A we showed that the size distribution
clusters fork51 always follows a power law which mean
there is no obvious border between the ‘‘giant’’ cluster a
smaller clusters. There is not a sharp break between the
est and the next largest cluster. The physical reason for th
that clusters grow only by the addition of newly add

.

4-6
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nodes. This is different than the case fork.1 and in perco-
lation models where clusters can also grow by a link co
bining two clusters. In this sense no giant cluster appear
the network except ford51. Equation~24! becomes

g8~x!5
~12d!2g/x1dg

d~12x!
, ~31!

which becomes00 in the limit x→1 with g(1)51. Applying
l’Hôpital’s rule yields

g8~1!5
1

122d
. ~32!

At d5 1
2 , g8(1)→`, which means the average size of fini

clusters approaches infinity. From the definition ofg(x) in
Eq. ~20! and the power-law cluster-size distribution foraj , it
follows thatg(1)51 for anydÞ1. To see thatg8(1)→` as
x→1 for d. 1

2 , we consider the sum form of the generati
function in Eq.~20!. For largej, aj'1/j (111/d), Eq. ~19!, and
g85( j 51

` j 2ajx
j 21, which can not be summed ford> 1

2 .
Whend, 1

2 , the probability of a new node not joining
cluster is higher than joining, and thus the weight of sm
clusters is higher than that of larger clusters, and hence
average size remains finite. Asd→ 1

2 , the probability of
forming clusters increases and so do the weight of large c
ters.

C. Infinite-order transition

To show the nature of our phase transitions@29#, we nu-
merically integrated Eq.~24! for different values ofk near
the corresponding criticaldc . In Fig. 6 the linear parts of the
ln@2ln(S)# plots suggest that

0 0.1 0.2 0.3 0.4 0.5

0

5

10

15

δ connection probability

g′
(1

) 
k=2
k=3
k=5

FIG. 5. Discontinuity ing8(1) for different values ofk. Solid
lines are theoretical, and symbols are results from the simulation
growing networks for 106 time steps, averaged over 30 runs.
06610
-
in

ll
he

s-

S~d!;ea(d2dc)b
asd→dc , ~33!

and because all derivatives ofSvanish atdc , the transition is
of infinite order.

Table I contains the parameters of the fitted straight lin
in Fig. 6. As the calculations were done close to the num
cal limit and referring to the similar results in Ref.@29# we
conjecture thatb equals2 1

2 for all k. This result suggests
that the mechanism of the transition is common and the n
ber of possible partners for each node to link to determi
the speed of emergence of the giant clusterS. These results
are in accord with Eq.~30!, the average cluster size decrea
is approximately independent ofk, but the size of the jump
and the rate of decrease is driven byk.

V. DISCUSSION

The present model was intended to gain insight into
evolution of various social networks by considering mech
nisms that account for heterogeneity in the population
participating entities. To analyze the statistical properties
the generated network we simplified the model. We fou
that the structure of the network dramatically changes w
the number of possible links to a newly added node increa
from k51 to k52. With k51 the network does not form a
giant cluster but the average cluster size goes to infinity~at
d5 1

2 ) in contrast tok>2, where the giant cluster appears
an infinite-order phase transition and the average cluster
jumps discontinuously but remains finite. The size of t
jump corresponds to how slowly the giant cluster overcom

of
FIG. 6. Numerical calculation of the giant cluster size close

but above the phase transition. Least-squares fitted solid stra

lines suggestS(d);ea(d2dc)b
. The flat ends of the curves on th

top appear due to the limit of the accuracy of numerical integrati
re
TABLE I. The parameter values (a andb) of the fitted lines in Fig. 6. Taking into account that we we
at the border of the maximal numerical accuracy and that the fit is short we presumeb52

1
2 .

k 2 3 5 10 15 20 25 30 40 50

a 20.25 20.5 20.75 21.14 21.35 21.52 21.64 21.77 21.9 22.02
b 20.577 20.569 20.557 20.554 20.551 20.552 20.551 20.554 20.551 20.55
4-7
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the other competitive large clusters. However, there is
transition fork51, where none of the clusters can abso
other clusters. The distribution of the size of finite cluste
always follows an exponential distribution, both below a
above the critical point fork.1, while the model studied in
Refs. @31,29# is in a critical state below and at the critic
point and exhibits an exponential distribution of cluster s
above the transition as in a Berezinskii-Kosterlitz-Thoule
phase transition. Thus, even though there are disconne
clusters as in our model, there are significant difference
the behavior of the cluster-size distribution.

Our model is similar to a previous model of Callawa
et al. @29#, but there are essential differences in seve
points due to nature of the growth algorithm: in the model
Callaway et al., network growth and connection formatio
are independent while in our model only newly added no
form connections. Also, in our model multiple connectio
might be formed in one time step depending on parametek
and d. This difference is well reflected in the generatin
function derived for the two models.

The structural properties of our model are more relev
to many social networks than other growth models such
preferential attachment because the degree distribution is
ponential which is closer to real social systems and beca
there are clusters of nodes which represents the realit
social systems where people usually form various comm
ties which are relatively isolated from each other. As long
the distribution of nodal traits are random, the structu
properties which we have discussed in this paper do not
pend on the nature of the traits and thus our network mo
should be relevant to any social network. The next step i
s
e,

-

n

-
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analyze the distribution of traits on a social network. Th
will vary depending on how the attachment rule depends
the values of these traits even though the structural prope
of the network remains the same. We will discuss the dis
bution of traits on a network in a future publication.

VI. CONCLUSIONS

We introduced a model of growing social networks a
analyzed its statistical properties. Our analytical calculatio
showed that these growing networks exhibit exponential
gree distributions. We gave an explicit description of the e
pected number of edges which showed an exponential
pendence on the age of a node. We also showed
emergence of a giant cluster and the cluster-size distribu
strongly depend on the number of possible initial partne
Numerical simulations suggested that the generated netw
have scale-free cluster distributions only at the phase tra
tion point. In all other regions of the phase space the clu
distribution was exponential. In the absence of an exact
lution for Eq. ~24!, we showed numerical results suggesti
that the order of the phase transition is infinite, which
similar to the results found in Ref.@29#.
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