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In this study we introduce and analyze the statistical structural properties of a model of growing networks
which may be relevant to social networks. At each step a new node is added which ls@lessible partners
from the existing network and joins them with probabiléyby undirected edges. The “activity” of the node
ends here; it will get new partners only if it is selected by a newcomer. The model produces an infinite-order
phase transition when a giant component appears at a specific vafijendiich depends ok. The average
component size is discontinuous at the transition. In contrast, the network behaves significantly different for
k=1. There is no giant component formed for afiyand thus in this sense there is no phase transition.
However, the average component size divergeﬁte%.
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[. INTRODUCTION the nodes represent individual persons, it is obvious that in
many circumstances two people are more likely to become
. . . connected in some form of relationship because of the nature
There are many kinds of networks including probably the ¢ ey individual characteristics. Our model is motivated by
most influential network of all, the World Wide Well].  he need to incorporate this idea. A similar idea was used in
This network is a popular one to analyze because of its sizg preferential attachment model by Bianconi and Bzsaba
and easy accessibility for statistical analysis. However, therF27] who assigned to each new node a fitness parameter. In
are many other networks that share some of the properties @heir model a larger fithess parameter may overcompensate
the Web and some that do not. Among these networks Wehe smaller probability of attachment.
find social network§2—4], collaboration net$5-8], indus- In our study we propose a simple model of growing net-
trial and business related network§,6,9, transportation works whose statistical properties are identical to a more
nets[10] and many biological related nets such as food, ecoeomplicated model containing nodes with distinct character-
logical, and protein interaction networksl—14], and neural istics. We will calculate the edge distribution of the growing
networks[15]. network, the distribution of cluster sizes, and the emergence
The mathematical description of networks started with theof a giant cluster. We will also show how the number of
fundamental works of Erdoand Rayi [16,17], which in the  attempted connections made when a new node is added de-
absence of reliable data on large networks were rarely confermines the position and type of the phase transition as well
pared to real networks. Recently, the computational boon@s the cluster-size distribution.
has provided us an increasing number of types of networks
and more data on these networks. One of the most exciting
discoveries is the scale-free structures of certain evolving Il. THE MODEL
networks[18—20. These nets have power-law degree distri-
bution, where only a few vertices have many connections t
the others and the rest of the graph is rarely connected.

We first consider a social network model where each node
as individual characteristics or traits. Each node that is
explain the origin of this scale-free structure of networksaddEd to the network is assigned a permanent set of random

Barabai et al.[21,29] suggested the mechanism of preferen-traits which could be coded as an ordered_binary string or
tial attachment and emphasized the key role of growth. I/6¢tor of lengthL. When a node is added it chooses ran-
their model the probability of a new node connecting to and®My ke N possible partners from the already existing
existing node is proportional to the degree of the target nodd!0des, or if there are less thar 1 (because the simulation
Variations on this model include networks where there ig)aS Not yet reached time step-2) it chooses all the exist-
aging of nodes, nonlinear attachment probabilities, and re"9 N0des as possible partners. A trait distance between the
wiring are allowed23—26. new node and one of |t§ pgssnble partners is calculated based
Probably the most obvious feature of real networks that i®n their trait vectors t;,t;) using a distance measure,
missing from most of the models studied by mathematician®(t;,t,), such as the Hamming distance. Then a connection
and physicists are characteristics of individual nodes in reak formed between the two nodes with a probability deter-
networks which influence the connection probability. Thus, ifmined from a given probability distribution over the distance
function p(D). Different functionsp(D) correspond to dif-
ferent sociopsychological situations. Thus, if we wish to
*Corresponding author. Email address: jant@kzoo.edu model the case where people are more likely to link together
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if they have similar traits, thep(D) would be a monotoni- confine ourselves to the structural properties of networks and
cally decreasing function ob. For this case, the simplest are considering these other nonstructural properties in our
p(D) would be to form a link ifD is below some threshold. current research.
This procedure is repeated for each possible partner of the
new node. Thus, each new node can have initially uj to
links with the other existing nodes. Existing nodes can have !Il: AGE DEPENDENCE OF THE EXPECTED NUMBER
more thank links as more nodes are added to the network OF EDGES, AND THE EDGE DISTRIBUTION
links between pairs of nodes.
Because each node is given a random trait vector, and the

later connections

initial connections
nodes to link to are also chosen randomly, many properties Ky(t)= f-é? N E’ 5 k
of the network simply depend on the probabilifythat two sonw1 s—1

chosen nodes will link together:
=06k(1+H,_1—Hy_4), 2)

8= p(D(ty,t))r(D(ty,12)), (1) _ , _
D whereN>k is the time step when it was creatgte smaller

N is, the older the node)ist is the total simulation times is
) . . the probability that two nodes form a connectidnis the
wherer (D) is the probability of the distand® between two  maximum number of initial connections of a newly created

nodes, and the sum is over all possible distance values. Thuggde, andH,, is thenth harmonic number given by the for-
the model is reduced to the following procedure. At eachmyla H,==",1/i for n>0, and Hy=0. This equation

time step we add a node to the network, and attempt to linkhows that the number of edges of a node heavily depends on
with k existing nodes which are chosen at random. An actuajhe age of the node.
connection is made with a probability. The asymptotic Equation(2) slightly overestimates the number of connec-
behavior of the network in the limit of large tintedoes not  tions for the oldest nodes in the network in two respects.
depend on the initial condition of starting with a single iso- First, the above formula assumes that a node alwayskhas
lated vertex. possible initial connections. However, multiple connections
Although frequently structural properties of a network of between a pair of nodes are not allowed, and there are less
nodes with trait vectors depend only @ there are other thank available partners for the initial connections of a node
properties which will depend on the detailed formp(D) created before or in thieth time step(overestimation of ini-
and the nature of the trait vectors. Examples of such propetial connections Second, the term for the late connections
ties include the distribution of traits in different parts of the assumes that a node hak/@m— 1) chance of being selected
network and the correlation of traits with distance in theas the partner of thenth node (which choosesk possible
network. For example, one can imagine a very simple netpartners out om—1 already existing nodgsHowever, for a
work of nodes representing men and women. In one networkode created in time stéy<k, this term yields a probability
the probability of forming a link is independent of sex and in of being chosen greater than 1 between time sképd and
the other persons prefer to link up with members of the opk (wherem—1<k) that is unacceptable again because mul-
posite sex. As long as the mean probability of two choseriple connections between a pair of nodes are not allowed
nodes linking together is the same in the two scenarios théverestimation of late connectignsBelow is the formula
structural properties of the two networks will be the same correcting these errors, but we will use the simpler, uncor-
but the distribution of men and women within the network rected formula in the remaining part of our paper because the
will be quite different in the two cases. In this paper weerrors are negligible.

k 1)
s—1’

t

Ky(t)=8min(k,N—1)+ >, Smin

s=N+1

Ok(1+H,_—Hy_,)
max(k—N+1,0)+kmax(H;, —Hy_1,0) —max(k—N,0)

-0 initial connections late connections

correction for oldest nodes

S|k

1
_ 1) | = if Nsk+1
(k=) 2(1<—1>) 1} 1

ok if N>k+1,

a,—ln(N— 1)— m)
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FIG. 1. (a) Expected number of edges of a nod€,j as a
function of the age of the nodé\| at different ages of the network
(t). Symbolsare numerically calculated values from E8), show-

FIG. 2. (@) Numerical simulation of the average expected num-
ber of edges of a nodeK() as a function of the age of the node

ing that the firskk+ 1 nodes have the same number of connections(N)' Symbolsare results of numerical simulatiorige is the graph

at anyt, whereas there is an exponential breakdown in the expectel Ed- (4)- Also see notes of Fig.(&). (b) Numerical simulation of
number of edges for nodes created later than tHesesrepresent e €dge distribution of the netwotkymbol$. Line s the graph of

approximations by Eq4): the number of edges of the fitsnodes Eq. (6). Average relative frequency of individual number of edges
are overestimated because the correction term in(Bqwas ig- and their standard deviation were calculated. Deviation of simula-

nored (see text Note that thex axis is logarithmic.(b) Edge dis- tiop frqm analytical results at high numbe_r of edges is a result of the
tribution of the network Symbolsrepresent numerically calculated finite size of S|mulated_ networks due to dispersion of_expectet_:l num-
distributions, where the numbers of edges of individual nodes Weré’er of edges around its expect_ed value as .showr} |r.1,0pa|ft.th|s
obtained from Eq.(3). These numbers were binned into integer flgure.. As qge of the network |ncreas§s this de\(lathn disappears
values and the relative frequencies of occurrences in each bin wefd!d simulation results approach analytical approximation for longer
plotted. Theline represents the approximate distribution given by|nterval. At _Iow numb_er of edges deviation results from negle_ctlng
Eq. (6), showing that it is valid for the edge distribution at large the correction term in Eq(4_) Aver_ages and standard deviations
values oft (for t=100). The mismatch between approximated and"Ve'® calculated from 100 simulations. Parameters vier®.5, k
actual distributions at the highest connection numbers is due to the ° as in Fig. 1.

same reason as if@). Note thaty axis is logarithmic. Parameters

were 6=0.5, k=5.

Ky(t)= k| a;—In(N—1) (4

2(N=-1)/)’
using Hp~Inn+y+1/2n, where y=-—[ge *Inxdx
~0.5772 is the Euler-Mascheroni const#@8], anda;=1  whereaq, is the same quantity used in E®). Using Eq.(4),
+In(t—1)+1/2(t—1). neglecting the term 1/A—1) in Eq.(4) for N large enough,

Note that the firsk+ 1 nodes are expected to have theand knowing that the age distribution of nodes is uniform,
same number of connectiorfbecauseK does not depend we analytically approximate the edge distribution of the net-
on N in their casg and the edge number starts breakingwork with the following exponential
down exponentially for nodes created after time stepl
[Figs. 1 and 2a)]. This means that this growth mechanism is
identical to that where the firét+ 1 nodes are created in the
same time step.

We now wish to determine the edge distributi®X) We used the standard transformation rule for random vari-
equal to the probability that a node picked at random has oables, P(N)=P(Ky)|dKy/dN| with P(N)=1/. For suffi-
averageX edges. We return to EQR) ignoring the correction ciently larget, due to the definition oy, this can be effec-
term in Eq.(3), and write the formula foKy(t) in the sim-  tively approximated by a distribution which is independent
pler form[Figs. 1 and 2] of t [Figs. 1 and ®o)]:

1
P(K(t)=X)= %efx’ﬁk”t. (5)

066104-3



ZALANYI et al. PHYSICAL REVIEW E 68, 066104 (2003
IV. CRITICAL BEHAVIOR

1
P(X):ﬁe_XIék*—l. (6)

A. Cluster-size distribution

. . . In some network models, such as the preferential attach-

. We can alsq de'termme a slightly different degree or edg?nent models, all the nodes belong to a single cluster. For
distribution which is the percentage of nodes er_edges. such models the focus is on the degree distribution and the
Denote byd(t) the expected number of nodes with degreegjsiance between nodes in the network. However, our net-
mat timet. The number of isolated nodeg(t) will increase ork can contain a number of disconnected clusters of
by (1—6)", which is the probability of the addition node not nodes. Then the key questions become what is the cluster-
connecting to any existing node, and decrease on average Bjze distribution and is there a phase transition between a

kado(t)/t :

do(1)

do(t+1)=do(t)+(1—5)k—kéT. (7)

The formula for the expected number of nodes of degnee
>0 is a bit complicated. For & m=Kk) there are two ways
to increasal,,: either selecting degre@— 1 nodes for con-

nection with the new node or the new node having exautly
edges. For fhi>k), the new node cannot contribute dg, .

The decrease will be proportional to the probability of choos-

ing a degream node for attachment.

d. (1) [k
1<m<k: dy(t+1)=d(t)+ké ’“tl()+ -
doy(t
X 8™(1— )k M—ks t(). (8)
Ao a(t dy(t
m>k:  d(t+1)=d(t)+k mtl( ) ks ”‘t( ) (9)

These equations are correcttaso, and numerical simu-
lations show thatl,,(t) ~pmt. Substituting this form into the
equations fod,(t) we obtain

T L

<k: =

mski Pm=0"2 | Tty (Trke) 0 10
ks m—k

m>k: pm=pk(1+—k5 (11)

This degree distributiom,, decays exponentially consis-
tent with our previous result faP(X).

collection of finite size clusters and the appearance of a giant
cluster much larger than the rest. The transition is similar to

that in percolation, with our parametérplaying the role of

the site occupation probability in a percolation model. The

key difference between our model and percolation models is
that our nodes do not sit on a lattice structure, and there is
thus no geometric constraints. The definition of a giant clus-

ter in our model is somewhat different than a spanning clus-
ter in percolation models. Nevertheless, some of the behavior
is similar.

Our model is similar to one by Callawat al.[29] where
an infinite-order phase transition was found. In that model
after a node was added to the network, two nodes were
picked at random and connected with probabilily Our
model is more general in that we consider the effect of mak-
ing more than one link at any given time. Also, in our model
the new links are between the added node and existing
nodes, whereas in the model by Callavedyal. the new links
are between any two nodes in the network.

To determine the cluster distribution we use a procedure
similar to the one we used to calculate the degree distribu-
tion. The cluster numbeN;(t) denotes the expected number
of clusters of sizé. On average, at each time step~&)*
isolated nodes arrive at the network akdN,(t)/t nodes
will be chosen for attachment reduciiyy. Thus,N; is de-
scribed by

Ny(t)

Ny(t+1)=N;(t)+ (1= )" —ks———.

n (12

For j>1 new clusters of siz¢ come from connecting the
new node to a cluster of size-1 or if k>1 using the new
node to make connections between smaller clusters whose
sizes add up tp ReducingN; will be jk oN;(t)/t nodes from
clusters of sizg¢ connecting to the new node. Thus, we have

k
Na(t+1)=Na(t)+{ 5(1—5)k*1N1t(t) —kéthZ(t), (13)
r-1 r-1
Y ZiN,,(1) ZoN, (1) (‘_ -2 Zi) Ni-1-3 o0
Nj(t+1)=N;(t) + 2}1 (r>5f(1—5)kfz+ Zz:-fl n T t
! éi.z.l,irsrj

t
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The first sum in Eq(14) determines the number of sums which can be written in the form

in the next term. Each of these sums represent a cluster that
is melted into thg sized cluster. These equations are valid
for t—oo, where the probability of closed loops tends to
zero. The giant cluster, if there exists one, is an exception in
which connection of nodes in loops is not negligible. Thus,
Eq. (14) holds only for the finite sized clusters in the net-
work. This property lets us to determine a generating func-

tion which we can use to find the size of the giant cIuster.WhereF(X) denotes they function. Equatior(19) shows that

Our simulations show that solutions of Eq$2)—(14) are of ;[he cqustgtr)-sge d|strr]|.but|on flm.: 1 aIV\]{gys fgllgws a polw?f'
the steady state formi;(f)=a t. Using this form in Eqgs aw distribution. This result is confirmed by simulations
(12—(14), we find ] I " shown in the left graph of Fig. 3. Distributions of cluster

sizes fork=2 (right graph of Fig. 3 in contrast tok=1
show power-law behavior only near the phase transition.

(19T T())
T2 T(ritle) 19

(1-8)

PR 19
B. Position of the phase transition

Figure 4 shows the simulation results f8rthe ratio of
the average size of the largest cluster to the total number of

k
(1> S(1- 8% ta, nodes versus the connection probability The figure sug-

a,= (1+2ko) , (16 gests that there is a smooth transition in the appearange of
at a specific value o betweens=0 and §=0.2, which
min(k,j—1) depends on the parametkr To predict the position of a
. 1 D ( )5r(1_5)kr possible phase transitiof, [29], we will use a generating
I 1+jks =1 r function for the cluster-size distributidr80]. To derive the

generating function we use the iterative EGb)—(17). The
generating function will be of the form

x 2 (j—l—iizi)

+otz,=j-1 _
Hasiis @J(X)=;l bix/, (20)
r-1
xag-1-s1yl1 (23, | 17)
T where
Generally, we cannot obtain a simpler equation for the b—ja 21
i jr

cluster-size distributiora;, except fork=1. Substitutingk
=1 into the Eqs(15—(17) we obtain after some algebra the

general result is the probability that a randomly chosen node is from a

i cluster of sizg. Multiplying both sides of Eqs(15)—(17) by
a=(1-8)8"Y(j—-1) H , (18) jx!, and summing overwe derive a differential equation for
! m=1 1+ mé g(x)

cluster-size distribution for k=1

cluster-size distribution for k=2

20 25
+ 6=0.3 + 8=0.05
0 806 207 o 8015
A 3=08 By, A 3203
~ 15 %y
é— + *g@
£ 10 + 2o
DA + Ro.
SO%%@ | 5 + A@&@
AW A ~®®\
-1 : ; : : 0 ; O
0 2 4 6 8 10 0 2 3 4 5 6 7
@) InG ) (b) InG )

FIG. 3. Cluster-size distribution for differeidis andk=1 (left), k=2 (right). Solid, dashed, and dotted lines are obtained from a least
squares fit for the interval 4In(N;)>—4 (a) and 20>In(N;)>2 (b) indicating the power-law behavior of the distributions. Simulation data
were obtained by averaging over 500 runs of fithe steps and are shown on a log-log plot. Note thabjrsimulations for§=0.05 and
6=0.3 distributions do not follow a power law. In Sec. IV B it is shown that there is a phase transitiod-n€at46.
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For those values o6 where no giant cluster existé< &,
g(1)=1, and both the numerator and denominator of Eq.
(24) goes to zero as— 1. Using I'Hopital’s rule we derive a
quadratic equation fay’ (1). Thesolution of this equation is

1-2ks+\(2ké—1)°—4k(k—1)8°
2k(k—1)6°

g'(1)= (27

for g(1)=1. Because as—0 all clusters will have size 1,
one can show that the correct solution of E2j7) is the one

with the negative sign. In addition from E®7) we can find

the location of the phase transition. It is the valueSafthere

the solution of Eq(27) becomes complex:

1-vV1-1k
FIG. 4. Giant cluster siz& as a function ofs andk. Symbols S=——F—. (28
. . . 2
are from simulations of the growing network for ®1@ime steps

averaged over 30 runs. Lines are from the analytical calculations.

S giant component size

X
0 02 04 06 08 1
0 connection probability

In the region where there is a giant cluster 5., Eq. (24)
becomes ag—1,

k
k
=—kdg' +x(1— &) + | 8'(1-o)k!
9= —kog Ex(1=0)+ 2y |> (=2 o9t 9
X(ng’gifli—kxgi). (22) kﬁ—kﬁ(l-l—(g—l)b‘)kil,
; / ; which is still not solvable analytically. Making the approxi-
Rearranging fog" we obtain mation (1+a)*~1+ka whena<1, we can simplify Eq.
Kk (29) close tod.:
(1- o)k —glx+ >, .)5i(1—5)k—igi
, i=1\1 ké—1
9° Kk (23 g’ (H~———, (30)
i K—i i~ 1; ko*(1—k)
ké—Xx>, |8 (1= gt
i=1
I whereg(1)<1, 6>6;, and[g(1)—1]6<1. In Fig. 5 we
which can be further simplified to show the simulation results and the above derived theoretical
functions forg’(1). We can seg¢hat for 6< 6., where we
—g/x+[1+(g—1) 5] have an explicit expression for (1) in terms of the param-
= - (24)  etersk and ¢ the fit is very good. Fo> &, the fit is good
ké—xko(1+(g—1)9) close to the phase transition point, where the approximation

) ) o ) (g—1)6<1 holds. Although belows,. the description of
The generating function for the f|n|te size clugters IS €X-g’(1) is very good, it seems that the location of the phase
actly one atx=1 when there is no giant cluster in the net- transition and the value of the functiayi(1) abovesd, is

work andg(1)<1 otherwise. Hence somewhat different than the data. Also if we carefully check
Fig. 5 at the jumps, we find that the larger the jump the less
S=1-9(1). (25 accurate the theory seems to be. This can be explained as

i ] ) follows. At the critical point the average size of finite clusters
Without an analytic solution for Eq24), we calculateS  jymps, hence much larger clusters appear in the network. As
numerically by integrating Eq24) with the initial condition e can only simulate for a finite time largeut not the giant
[%,9(X)]=(Xo,%o(1— 8)"/[1+ks)] wherex, is small. This  ¢lusters are underrepresented. The weights of them computed
is equivalent to starting with a cluster of only one node. Infrom the simulation data are less than they would be in an
Fig. 4 there are results from direct simulations of the mode|pfinjtely long simulation. Away from the transition regime
(symbolg and solid lines from the integration of the gener- fewer finite size clusters remain beside the giant cluster in
ating function. The agreement is good which verifies the apthe network, and thus the distribution can be specified better.
proximations. Although the formalism using the generating function can

To discuss the phase transition location we first considepe gone fokk=1, the meaning of a giant cluster is problem-
the casek>1. Consider the expected value that a randomlyatic. |n Sec. IV A we showed that the size distribution of
chosen node belongs to a finite size cluster. We can detegjysters fork=1 always follows a power law which means
mine this quantity in terms of the generating funct@x)  there is no obvious border between the “giant” cluster and

, smaller clusters. There is not a sharp break between the larg-
(s)= g'(1) (26) est and the next largest cluster. The physical reason for this is
g(1) that clusters grow only by the addition of newly added
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FIG. 5. Discontinuity ing’(1) for different values ok. Solid
lines are theoretical, and symbols are results from the simulations of

growing networks for 10time steps, averaged over 30 runs FIG. 6. Numerical calculation of the giant cluster size close to

but above the phase transition. Least-squares fitted solid straight

. a(5—5)B
nodes. This is different than the case kor 1 and in perco- lines sugges8(d)~e*>~?)". The flat ends of the curves on the
lation models where clusters can also grow by a link com-op appear due to the limit of the accuracy of numerical integration.
bining two clusters. In this sense no giant cluster appears in
the network except fo6=1. Equation(24) becomes S(8)~ex9-%" a5, S, (33

g'(x)= (1= 9)=g/x+ 59 , (31) and because all derivatives $fanish ats., the transition is
6(1-x) of infinite order.

Table | contains the parameters of the fitted straight lines
in Fig. 6. As the calculations were done close to the numeri-
cal limit and referring to the similar results in R¢R9] we

1 conjecture thaiB equals— 3 for all k. This result suggests
g'(1)= 125 (32 that the mechanism of the transition is common and the num-
ber of possible partners for each node to link to determines
At 6=1, g'(1)—, which means the average size of finite the ;peed of emergence of the giant cIuﬁeThgse results
clusters approaches infinity. From the definitionggk) in &€ in accord with Eq(30), the average cluster size decrease
Eq. (20) and the power-law cluster-size distribution fgr, it 'S approximately independent &f but the size of the jump
follows thatg(1)=1 for any 5+ 1. To see thag'(1)—= as  and the rate of decrease is drivenloy
x—1 for 6> 3%, we consider the sum form of the generating
function in Eq.(20). For largej, aj~1/j(**¥?, Eq.(19), and V. DISCUSSION
g'==]_,j%x)*, which can not be summed f@= ;.

which becomeg in the limit x— 1 with g(1)=1. Applying
I'Hopital’'s rule yields

When 5<%, the probability of a new node not joining a The_ present 'model was intended to gain .insi'ght into the
’ ievolution of various social networks by considering mecha-

cluster is higher than joining, and thus the weight of smal that t for het itv in th lati f
clusters is higher than that of larger clusters, and hence th@sms that account for heterogeneity In the population o

. ins finite. A8 th ity of Participating entities. To analyze the statistical properties of
average size remains finite , the probability o dhe generated network we simplified the model. We found

that the structure of the network dramatically changes when
the number of possible links to a newly added node increases
from k=1 to k=2. With k=1 the network does not form a
giant cluster but the average cluster size goes to infiity

To show the nature of our phase transiti@9], we nu-  5§=3) in contrast tck=2, where the giant cluster appears in
merically integrated Eq(24) for different values ofk near  an infinite-order phase transition and the average cluster size
the corresponding critical,. . In Fig. 6 the linear parts of the jumps discontinuously but remains finite. The size of the
In[—In(9)] plots suggest that jump corresponds to how slowly the giant cluster overcomes

C. Infinite-order transition

TABLE I. The parameter valuesyandg) of the fitted lines in Fig. 6. Taking into account that we were
at the border of the maximal numerical accuracy and that the fit is short we prq&ame%.

k 2 3 5 10 15 20 25 30 40 50

a -025 -05 -075 -114 -135 -—-152 -164 -—-177 -19 -—-202
B —-0577 —-0569 —-0.557 —-0554 -0551 —-0.552 -0551 —-0.554 -0.551 -0.55
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the other competitive large clusters. However, there is n@nalyze the distribution of traits on a social network. This
transition fork=1, where none of the clusters can absorbwill vary depending on how the attachment rule depends on
other clusters. The distribution of the size of finite clustersthe values of these traits even though the structural properties
always follows an exponential distribution, both below andof the network remains the same. We will discuss the distri-
above the critical point fok>1, while the model studied in bution of traits on a network in a future publication.
Refs.[31,29 is in a critical state below and at the critical

point and exhibits an exponential distribution of cluster size

above the transition as in a Berezinskii-Kosterlitz-Thouless VI. CONCLUSIONS

phase transition. Thus, even though there are disconnected

. - . .~ We introduced a model of growing social networks and
clusters as in our model, there are significant differences in . - . . .
) ; oI analyzed its statistical properties. Our analytical calculations
the behavior of the cluster-size distribution.

our model is similar to a previous model of Callawa showed that these growing networks exhibit exponential de-
prev . . Y pree distributions. We gave an explicit description of the ex-
et al. [29], but there are essential differences in severa . :
; L pected number of edges which showed an exponential de-
points due to nature of the growth algorithm: in the model of

Callaway et al,, network growth and connection formation pendence or; thg agel of a ngdﬁ' VI\/e alsq shdqwe_g t.hat
are independent while in our model only newly added node§ergence ot a giant cluster and the cluster-size distribution

form connections. Also, in our model multiple connectionsStrongly depend on the number of possible initial partners.
. o . 1P Numerical simulations suggested that the generated networks
might be formed in one time step depending on paraméters

and 5. This difference is well reflected in the aeneratin have scale-free cluster distributions only at the phase transi-
- . 9 9tion point. In all other regions of the phase space the cluster
function derived for the two models.

The structural proverties of our model are more releVanFistribution was exponential. In the absence of an exact so-
: prop ution for Eq. (24), we showed numerical results suggesting
to many social networks than other growth models such a

preferential attachment because the degree distribution is ex:at. the order of the phasg transition is infinite, which is
. S . Similar to the results found in Reff29].

ponential which is closer to real social systems and because
there are clusters of nodes which represents the reality of
social systems where people usually form various communi-
ties which are relatively isolated from each other. As long as
the distribution of nodal traits are random, the structural We acknowledge support from the Henry R. Luce Foun-
properties which we have discussed in this paper do not dedation, the National Science Research Cour@ITKA)
pend on the nature of the traits and thus our network modeBrant No. T038140, and the National Science Foundation,
should be relevant to any social network. The next step is t@rant No. PHY-9801878.
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